
Stealth Distributed Hash Table:
A Robust and Flexible Super-Peered DHT

Andrew Brampton, Andrew MacQuire, Idris A. Rai,
Nicholas J. P. Race and Laurent Mathy

Computing Department,
Lancaster University

{brampton,macquire,rai,race,laurent}@comp.lancs.ac.uk

ABSTRACT
Most Distributed Hash Tables (DHTs) simply consider in-
terconnecting homogeneous nodes on the same overlay. How-
ever, realistically nodes on a network are heterogeneous
in terms of their capabilities. Because of this, traditional
DHTs have been shown to exhibit poor performance in a
real-world environment. Additionally, we believe that it is
this approach that contributes to a limited exploitation of
peer-to-peer technologies. Previous work on super-peers in
DHTs was proposed to address these performance issues,
however the strategy used is often based on locally clustering
peers around individual super-peers. This method of super-
peering, however, compromises fundamental features such
as load-balancing, resilience and routing efficiency, which
traditional DHTs originally promised to offer.

We propose a Stealth DHT which addresses the deficien-
cies of previous super-peer approaches by using the DHT
algorithm itself to select the most appropriate super-peer
for each message sent by peers. Through simulations and
measurements, we show the fitness for purpose of our pro-
posal.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed networks;
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems

General Terms
Algorithms, Performance, Experimentation

Keywords
Distributed Hash Tables, Peer-to-Peer, Stealth DHT

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2006 ACM 1-59593-456-1 / 06 / 0012 ...$5.00.

1. INTRODUCTION
A common design approach for Distributed Hash Tables

(DHTs) simply considers interconnecting autonomous and
homogeneous nodes on the same overlay. The autonomicity
of nodes arises in the sense that any node may join or leave
the network, and perform any operation supported by the
DHT such as routing messages or putting and getting data
(indexed by keys) as they wish. On the other hand, the ho-
mogeneity of nodes assumes that nodes are equally capable
devices which trust each other at the highest level.

Clearly, these assumptions are unrealistic for any prac-
tical large scale network. This is demonstrated by various
measurement studies of peer-to-peer file sharing systems,
which have shown a natural inequality in the capabilities
and behaviour of peers [20]. This leads to DHT based sys-
tems often operating at a level of performance far below that
which is expected. Indeed, lookup latencies can be seriously
affected by a node that has become a routing bottleneck
due to a lack of bandwidth or CPU cycles. Another exam-
ple is when nodes continually join and leave the network in
an unpredictable fashion, there can be tremendous increase
in network overhead. This behaviour is often referred to as
churn, severe levels of which have been shown to cause many
DHTs to simply break down [8, 16, 18].

A classical approach to improving this situation is to lever-
age the natural heterogeneity in the system by using super-
peers [14, 25]. However, most DHT-based super-peer pro-
posals rely on multiple overlays (e.g. maintaining several
rings) and suffer from a rather static binding between peers
and super-peers (i.e. the same super-peer proxies for peers’
whole sessions). This, in turn, leads to a higher maintenance
overhead, as well as potentially single point of failure and
load-balancing issues.

In this paper we propose a simple, yet elegant technique
applicable to the majority of existing DHT systems, which
enables the use of super-peers in DHT-based networks, while
avoiding the deficiencies of previous super-peer approaches.
Our proposal, the Stealth Distributed Hash Table (Stealth
DHT), differs from traditional DHTs mainly in that it makes
a subset of nodes effectively “invisible” to the routing and
forwarding decisions on the network. Therefore, these nodes
never receive any queries and thus cannot intercept nor reply
to them. As they are hidden from the rest of the overlay,
these nodes are referred to as stealth nodes. In contrast,
the nodes responsible for forwarding messages in the DHT
are referred to as service nodes (and are therefore equiva-
lent to super-peers). Salient features of a Stealth DHT are
that it maintains a single overlay, and that any source node

(including stealth nodes) uses the original routing decision
process found in traditional DHTs to choose the first hop
of their message. In other words, the original DHT rout-
ing is used for super-peer selection on a per message basis,
meaning there exists no single point of failure in the Stealth
DHT approach – preserving all of the benefits of traditional
DHTs whilst enabling super-peering.

Realistically, we envisage service nodes making up a rela-
tively small percentage of nodes in the DHT, perhaps owned
by a single entity as a means of service provision. It there-
fore follows that they should ideally be highly stable and ca-
pable machines (e.g. dedicated servers). Conversely, stealth
nodes are expected to be heterogeneous, autonomous devices
owned by end-users and are likely to connect and disconnect
from the network in an unpredictable fashion.

In this paper, we focus on evaluating the performance of
Stealth DHTs in comparison with a traditional DHT, both
with and without churn in the DHT population. While we
believe that a Stealth DHT can be created from almost any
of the numerous existing algorithms to date, we chose Pas-
try [19] to be used in our performance evaluation, as we
deemed it to be a good representation of a typical DHT. We
later use both simulations and an implementation running
on PlanetLab [15] to critically evaluate our approach. In
particular, we show how a Stealth DHT can reduce messag-
ing overhead, reduce object retrieval latency, provide greater
resilience under churn and more, all for the cost of increased
load being placed on a small number of (presumably over-
provisioned) nodes.

The rest of the paper is organised as follows. In Section 2,
we present a brief overview of traditional DHT concepts,
then continue by discussing the details of a Stealth DHT
in Section 3. We explain our evaluation methodology and
go on to show a number of results in Section 4. We then
discuss potential applications of the Stealth DHT work in
Section 5. Work related to our proposal is elaborated upon
in Section 6 and finally we conclude the paper in Section 7.

2. DHT OVERVIEW
Distributed Hash Tables (DHTs) have been shown to be a

promising form of decentralised structured peer-to-peer net-
working, offering substantial scalability and resilience. Un-
surprisingly, there exist numerous DHT systems [19, 22, 24,
17]. Primarily, DHTs serve as an object location service
that can be used as a substrate for multiple large-scale dis-
tributed applications such as storage [5, 3, 10], multicast [2,
26] and load balancing systems [9, 7].

Many DHT algorithms have a similar structure, wherein
each node on the network has a unique identifier (ID), ran-
domly generated within the address space. The address
space is dynamically partitioned into regions depending on
the number of nodes and their addresses. Each region is
then assigned to a single node.

Each key in the DHT is generated by applying a hash
function to the object it represents, producing an identifier
that falls within a specific region of the address space. The
DHT algorithm ensures that the key is held by the node re-
sponsible for that region. In most implementations a node
will maintain relatively sparse routing state spanning the en-
tire address space, which will grow with increasing numbers
of nodes in the DHT.

A reference to an object can then be retrieved by sending a
request message addressed to the value of the corresponding

JoinMsg
StateMsg
FinishedMsg

X

C

B

A

(a) State Gathering
Phase

X

(b) Announcement Phase

Figure 1: Join Procedure

key. The DHT routing algorithm then ensures that this
message is actually delivered to the node responsible for the
region of the address space where the key falls.

When a new node joins a DHT, it must first initialise its
routing table. The assumption is made that the new node
will know at least one established node on the network. This
bootstrap node can be used to route a join message to the
region that the joining node’s ID lies within.

DHTs normally provide good routing performance in
terms of average overlay hops, varying slightly depending
on the routing algorithm used. The actual trend will often
depend on the geometry of the DHT itself. For instance,
Pastry, Chord and Tapestry [19, 22, 24] are all based on the
common ring structure, giving approximately O(logN) hops,
where N is the number of nodes in the DHT. Content Ad-
dressable Network (CAN) [17], however, is a d-dimensional

space, instead giving (d/4)(N1/d) hops on average.
The following section provides an overview of the Stealth

DHT approach based upon Pastry.

3. STEALTH DHT OVERVIEW
A Stealth DHT differs from a traditional DHT in that it

splits the network into nodes of two differing types: service
and stealth. Service nodes are expected to be highly capable,
reliable machines, and they provide the routing infrastruc-
ture for the overlay. Stealth nodes are “clients” that commu-
nicate with and through service nodes only. Note however,
that the assignment of role to nodes is application depen-
dent and in no way prescribed or constrained by the Stealth
DHT itself. Future work may involve automatic assignment
of roles to nodes to improve the autonomicity of the system.
This paper concentrates on the modifications required for a
Stealth Pastry DHT, however we believe that similar simple
general principles can be applied to other DHTs too.

3.1 Service Node Join
A service node is a fully-fledged DHT node and joins the

(Stealth) DHT in conformance with the method prescribed
by the original DHT.

It is worth noting that the join procedure in traditional
DHTs conceptually has two phases: a state gathering phase
at the end of which the joining node will have received
enough information (routing, etc.) to take part in the DHT,
and an announcement phase through which the joining node
advertises its presence on the overlay to some of the nodes
already present.

The state gathering phase in Pastry is depicted in

Fig. 1(a). Remember that a service node joins the network
in the same way a typical Pastry node would. A Pastry (or
a service) node X uses prior knowledge of a bootstrap (ser-
vice) node A to route a join message into the DHT, destined
for the (service) node closest to X’s randomly generated ID.
Upon receiving and forwarding the message, (service) nodes
A and B send a relevant fraction of their routing table di-
rectly to X. The join message then arrives at its destination
C (the closest (service) node to X’s ID). C, in addition to
sending routing data, informs X about neighbourhood in-
formation (i.e. leafset) and that finishes the state gathering
phase. Node X then proceeds with the announcement phase
(see Fig. 1(b)) to announce its presence and ID on the ring
to some other (service) nodes. The main purpose of this an-
nouncement is to enable the presence of X in other nodes’
routing tables.

3.2 Stealth Node Join
A stealth node joins the Stealth DHT by only completing

the state gathering phase of the original DHT, and ignor-
ing the announcement phase. This is illustrated in Fig. 1(a),
but in this case node X is a stealth node and all other nodes
depicted are service nodes. In particular, the reader should
note that the node used as bootstrap node should be a ser-
vice node.

The effect of not initiating any announcement phase is
that no service node ever learns to route through a stealth
node. In other words, a stealth node never appears in any
routing table, yet a stealth node is able to route messages
into the DHT using the routing information it acquired dur-
ing the state gathering phase. Stealth nodes are therefore
capable of injecting messages into the DHT, choosing the
first hop for their messages from their routing table in the
same way ‘normal’ DHT nodes do, but are never used to
relay any message, nor will they ever receive any message
on the DHT (unless a message is sent directly to them from
a service node e.g. a reply to a query). This results in a
single overlay (in our example case a single DHT ring) that
accommodates both the service and stealth nodes.

From a functional point of view, stealth nodes can publish
and retrieve keys in and from the DHT respectively. These
operations are achieved by sending simple put or get mes-
sages. However, as stealth nodes never receive put messages,
only service nodes can store keys, conferring them the status
of super-peers.

As stealth nodes never appear in routing tables, several
stealth nodes may inadvertently choose the same node ID
without collisions being detected. Likewise, a new service
node could also choose the same node ID as an existing
stealth node without it being detected. The only detectable
collisions involving a stealth node are those occurring when
a new stealth node chooses a ID that already identifies an
existing service node. This is because ID collisions are de-
tected when the join message destination’s ID is the same
as the last hop’s node ID. In such cases, a collision mes-
sage is returned to the joining node instead of the finished
message. However, because stealth nodes do not relay mes-
sages nor hold keys, their IDs are never required to locate
them on the DHT ring so that unresolved node ID collisions
involving stealth nodes do not pose any problem to the op-
eration of the Stealth DHT. In essence, stealth nodes only
pick a node ID to gather routing information. Of course,
the detectable stealth node ID collisions can be resolved by

having the stealth node select a new ID and then issue a
new stealth join message.

Note that stealth nodes have no way of detecting the pres-
ence of other stealth nodes, while service nodes can only
know of stealth nodes through their recent activity, hence
the name of our scheme which exhibits enhanced privacy
properties compared to the original DHT. A further benefit
is that the lack of announcement messages cuts the overhead
of joining stealth nodes significantly.

3.3 Stealth Routing State
Several observations can be made about the routing state

needed by stealth nodes. Firstly, the role of the leafset in
Pastry is to ensure that message routing always completes
correctly [19]. However, since stealth nodes only initiate
routing of messages (by selecting the first hop), it is clear
that a stealth node does not need to maintain a leafset which
is only used to consistently determine the last hop.

Secondly, if node IDs are represented in base 2b, the rout-
ing table is conceptually a log2bN × 2b array, where N is
the size of the address space. This is because the entries of
row n of any node Z contain references to nodes whose IDs
share a common ID prefix of length n digits, and therefore
it is impossible to have more than log2bN digits in common.
The n + 1 ID digit corresponds to column number of the
entry, and again there are only 2b different digits.

The routing procedure for a node that needs to send /
forward a message is to select the row of its routing table
corresponding to its prefix match with the destination ID
(the first row of the routing table is row 0 corresponding to
no prefix match) and pick as a next hop the entry of the
column corresponding to the value of first (non-matching)
digit of the destination ID. This ensures that the next hop
of the message shares a longer ID prefix with the destination
than the current node does (and is therefore closer to the
destination). This very concise and simplified description of
the routing procedure is enough for our discussion and we
refer the reader to [19] for further details of Pastry routing.

If we observe that the probability for two randomly chosen

IDs not to share any prefix is 2b−1
2b , we see that in the vast

majority of cases, the initial sender of a message will use the
first row of its routing table to select the first routing hop.
Indeed, in the typical case where b = 4 (IDs in base 16),
this situation occurs 15/16 = 93.75% of the time. Recalling
that stealth nodes are always the origin of any messages
they send through the DHT, then it is obvious that reducing
the routing information in stealth nodes to the first row
of the routing table will have very little impact on routing
performance while greatly reducing state overhead. In other
words, the service nodes that handle the join message for a
stealth node should only provide such node with routing
information contained in the first row of their routing table
(as opposed to information from the full routing table). It is
natural to question the performance gain when stealth nodes
use a single row routing table (with at most 2b nodes’ IDs)
compared to when they have a list of a random 2b nodes’
IDs from existing service nodes. We discuss the benefits of
using the former in Section 4.2.5.

Lastly, from the above description of routing, it should be
clear that one column per row of the routing table contains
an empty entry: this is the column corresponding to the n+1
digit of the ID of the node holding the routing table (i.e. the
node itself). This is because the corresponding entry in row

n would then share a prefix of length n+1 with the node, and
should therefore belong on the following row. For stealth
nodes, which only have a single row in their routing table,
this would mean that there would be no next hop entry for
destinations whose IDs have the first digit equal to that of
the stealth node. The only way a stealth node could then
send toward such destinations would be to pick any other
entry at random from their routing table and let that node
(which does not share any prefix with the destination) decide
on a more appropriate next hop. To avoid such sub-optimal
“dog leg” routes, we require that stealth nodes do have an
entry pointing to a node that share a one-digit prefix with
the stealth node ID in the otherwise empty column entry.
This ensures that a complete and valid routing table at a
stealth node will always provide a next hop that has at least
a one-digit prefix with the destination.

3.4 Stealth Routing State Maintenance
When a service node leaves the network, some stealth

nodes will inevitably have obsolete information for that node
in their routing tables. Complete disconnection, however,
can only occur when all service nodes in a stealth node’s
routing table have left the DHT. Just like service nodes, a
stealth node will detect a failed service node in its routing
table when it attempts to send a message to that node, or
through maintenance probes.

One problem that arises as a result of the isolation of
stealth nodes is that their routing tables are difficult to keep
up to date. To recap, stealth nodes never receive announce-
ment messages from newly arrived service nodes as they
are not addressable on the DHT. A new method is there-
fore required for maintaining routing state at stealth nodes.
We propose several possible approaches: rejoining, periodic
polling and piggybacking.

A stealth node could rejoin the Stealth DHT on a periodic
basis. This can be done without changing its chosen node
ID and can even bootstrap through any entry of its routing
table.

Periodic polling is a variation of rejoining where a stealth
node periodically queries any of the service nodes in its rout-
ing table for its current relevant routing state (as opposed
to all the nodes on the path to a service node closest to its
ID).

The piggybacking approach requires service nodes to at-
tach some additional routing state to every message it sends
to a stealth node1. Upon receiving each message from a
service node, a stealth node checks these attached IDs to
see if they can be used to update its routing table. This
approach allows the routing tables in stealth nodes to stay
fresh whilst being updated in a passive fashion. An added
benefit is that the mechanism is “self-tuning”: the more ac-
tive a stealth node is on the network, the fresher and more
complete its routing table is.

To evaluate the respective merits of these different ap-
proaches for refreshing routing state in stealth nodes, we
have run the same simulation scenario for each, with varying
rates of churn (refer to Section 4 for details on the simulation
setup). Fig. 2(a) shows the average number of valid routing
entries in stealth node routing tables (i.e. one row with 2b

1Recall that although stealth nodes are not addressable on
the DHT, a service node will communicate directly via the
underlying network with a stealth node when responding to
a solicitation from it.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

Mean inter−arrival/departure time (minutes)

A
ve

ra
ge

 n
um

be
r

of
 v

al
id

 e
nt

rie
s

pe
r

no
de

No refresh
Polling
Piggybacking
Rejoining

(a) Validity of routing entries

0 2 4 6 8 10
0

0.5

1

1.5

2
x 10

5

Mean inter−arrival/departure time (minutes)
N

um
be

r
of

 m
es

sa
ge

s

No refresh
Polling
Piggybacking
Rejoining

(b) Overhead

Figure 2: Stealth routing state refresh

entries where b = 4), while Fig. 2(b) shows the overall num-
ber of messages observed during the scenario (e.g. queries,
routing updates, etc.). Note that the period for polling was
set to 100 seconds, while that for rejoining to 5 minutes.

From these results, it seems clear that polling provides the
best routing table maintenance, albeit at the highest cost.
This is due to two messages being generated at each polling
interval (the request and reply message). In contrast, the re-
joining mechanism updates state 3 times less frequently than
polling, but only generates log2bN message per join. Over-
all, piggybacking appears to offer a better accuracy versus
cost tradeoff, as it does not increase the number of mes-
sages (although it does slightly increase the message size)
while keeping the routing table fresh.

4. EVALUATION
In order to evaluate our Stealth DHT proposal, we devel-

oped our own discrete-event packet-level simulator for Pas-
try and Stealth DHTs, because existing Pastry simulators
did not offer all the features we required. We also imple-
mented both Pastry and a Stealth DHT for evaluation in
a real-world environment (PlanetLab). As with our simula-
tor, we considered modifying an existing open-source project
such as FreePastry or Bamboo [4, 18], but found the flexi-
bility of creating our own implementation to be preferable.

Throughout the paper, we describe Stealth DHTs net-
works as Stealth (S%), where S% of nodes on the DHT are
stealth nodes. For example, when we discuss the perfor-
mance of a Stealth (95%) DHT, it implies that 95% of the
existing nodes are stealth nodes (e.g. on a 1,000 node DHT,

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

DHT network size

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Theoretical
Microsoft Pastry 3.0A
Simulator
Implementation

Figure 3: Simulator and implementation validation

950 stealth and 50 service nodes would exist). This is a
value used repeatedly throughout the paper, as it clearly
shows the differences that using a Stealth DHT can make;
with lower values, results have been found to tend towards
that of the corresponding Pastry DHT.

In both the simulator and the implementation, 1,000 or
more randomly generated keys were initially put into the
network. Each key was assigned a popularity ranking follow-
ing a Zipf distribution with an α parameter of 1.2. When-
ever a node performs a get operation, the probability of
it choosing a particular key depends on this distribution,
thus providing a realistic popularity function as commonly
observed in web-page access, caching systems, peer-to-peer
filesharing [21], etc. In all figures where the network is of a
fixed size, 1,000 nodes were used, 95% of which were stealth
nodes, if applicable.

4.1 Validation
In order to validate both our simulator and our implemen-

tation, we compared our results with both Microsoft’s own
Pastry simulator [19] (MS Pastry version 3.0A) and theoret-
ical values. We found that they all produced similar results.
As an example, each DHT was found to give hop count per-
formance of approximately log2bN as expected, where N is
the number of nodes in the network; this result is shown
in Fig. 3. We used the optimisation of Proximity Neigh-
bour Selection (PNS) [19] within the two simulators and
also compared lookup latency and overlay stretch on identi-
cal topologies.

4.2 Simulations
In the following sections, we explain and evaluate the sim-

ulation workloads used on a case by case basis. The exact
parameters used in each simulation reflect what we believe
to be a good balance between practicality and accuracy. In
all cases we ran our simulations with at least 5 iterations
on a 1,000 router transit-stub topology (with 4% transit
nodes), generated by GT-ITM [1]. DHT nodes were then
connected to this topology in a random fashion via realistic
bandwidth/latency end-host links.

4.2.1 Join Performance
As explained in Section 3, stealth nodes make use of a

simpler join mechanism in comparison with service or tra-
ditional DHT nodes. We therefore compare the overhead of
join operations between Pastry and a Stealth DHT by first
measuring the number of messages generated during the con-

0 200 400 600 800 1000
30

40

50

60

70

80

90

100

DHT network size

D
ec

re
as

e
in

 m
es

sa
ge

s
pe

r
no

de
 (

%
)

Stealth (95%)
Stealth (80%)
Stealth (50%)

Figure 4: Percentage decrease in messages generated

0 200 400 600 800 1000
−5

0

5

10

15

20

25

30

DHT network size
D

ec
re

as
e

in
 jo

in
 la

te
nc

y
(%

)

Stealth (95%)
Stealth (80%)
Stealth (50%)

Figure 5: Percentage decrease in join latency

struction of the DHT. In both Pastry and the Stealth DHT,
new nodes joined by contacting randomly selected existing
nodes. The exact number of messages obtained is comprised
of the initial join message, replies sent back to the joining
node and, where appropriate, the messages sent from the
joining node announcing its existence.

Fig. 4 shows the percentage decrease in the number of
generated messages per node2 as a function of network size
in comparison with Pastry. The figure clearly illustrates
that for DHT networks of identical size, the Stealth DHT
has a consistently lower join overhead than Pastry in terms
of messages. As an example, we see that for a Stealth DHT
with 95% Stealth nodes, approximately 90% fewer messages
are generated than the equivalent Pastry network. A major
factor in the lower join overhead in the Stealth DHT is that
stealth nodes do not have to announce their presence on
the network. A further contributing factor is that a Stealth
DHT by its very nature has fewer nodes performing routing
operations. This means that messages will travel fewer hops
on average, which in turns means that fewer nodes will send
joining nodes routing state, as this is performed on a per-hop
basis. Finally, and although not shown in Fig. 4 (which deals
exclusively in DHT messages), service nodes and traditional
DHT nodes have to periodically send keep-alive messages
to their close neighbours (leafset) to ensure correct routing;
as stealth nodes do not route messages, this is unnecessary,
leading to another reduction in overhead.

The second metric we use to analyse join performance is

2We define percentage decrease as 100×(1−MStealth
MP astry

), where

M represents the performance metric in question.

0 200 400 600 800 1000
−40

−20

0

20

40

60

80

100

DHT network size

D
ec

re
as

e
in

 lo
ok

up
 la

te
nc

y
(%

)

Stealth nodes churn
No nodes churn
Stealth and service nodes churn
Service nodes churn

Figure 6: Percentage decrease in lookup latency rela-
tive to Pastry

join latency, defined here as the time elapsed between a node
sending its initial Join message and it receiving a JoinFin-
ished message from the recipient. It therefore represents the
time taken for a node to receive its routing state, but not
the time taken for other nodes to also be able to route to it.
This therefore allows for a fair comparison between Pastry
and a Stealth DHT, as stealth nodes send no announcement
messages.

Fig. 5 shows the percentage decrease in join latency rela-
tive to Pastry. It shows that for a 95% stealth node DHT,
nodes can expect to join 10-15% faster than the equivalent
Pastry DHT. As a Stealth DHT provides a lower hop count
per message on average, it has a correspondingly lower end-
to-end overlay latency. Accordingly, as the number of ser-
vice nodes tends towards that of Pastry’s overall nodes, the
join latency also tends towards that of Pastry. Of course, if
announcement messages were also taken into account, we
would expect to see a trend more favourable to Stealth
DHTs for larger network sizes.

4.2.2 Storage and Retrieval
If a DHT is viewed purely as a black-box system, then two

of the most important performance metrics are how quickly
keys can be retrieved, and how likely a given key is to be
retrievable when network conditions are unstable.

We therefore begin by defining lookup latency as the time
elapsed between a node performing a get for a specific key
in the DHT and it receiving a reply. Fig. 6 shows the per-
centage decrease in lookup latency relative to Pastry for a
Stealth DHT with 95% stealth nodes. Each line on the fig-
ure represents a different level of stability in the network, as
in this simulation (and several other simulations through-
out the paper), we churn selected sets of nodes whilst per-
forming get operations. Both the get request rate and inter-
arrival/departure time are dictated by an exponential distri-
bution with a mean of six minutes unless otherwise specified.

The figure clearly shows that even without churn on mod-
erately sized networks, the Stealth DHT provides over a 30%
decrease in lookup latency. When both stealth and Pastry
nodes churn, however, the decrease in latency relative to
Pastry is significantly higher, providing a reduction of be-
tween 40% and 50%. The reason for this is churning stealth
nodes have a minimal effect on the routing efficiency of the
Stealth DHT, whereas in Pastry, churn causes much poorer
routing due to the number of invalid routing entries that

0 200 400 600 800 1000
0

20

40

60

80

100

DHT network size

M
is

se
s

un
de

r
ch

ur
n

(%
)

Stealth (95%), k=1
Pastry, k=1
Stealth (95%), k=3
Pastry, k=3

Figure 7: Percentage of misses under churn

result.
As we expect service nodes to be highly stable machines,

we believe that the comparisons without churn and with
stealth node churn to be the most important. However,
for completeness, we also examined the effect of exclusively
churning service nodes, as well as churning both service and
stealth nodes. Fig. 6 shows how both cases have an under-
standably detrimental effect on the Stealth DHT, resulting
in performance which is approximately 20% worse than Pas-
try for larger networks. Interestingly, when both stealth and
service peers churn, the average performance is slightly im-
proved over when service nodes alone churn. We attribute
this to the fact that the churning stealth nodes are get-
ting fresher routing tables when they rejoin than the persis-
tent stealth nodes whose routing tables become increasingly
stale.

It is important to note that the reply to a lookup may
be simply to inform the requesting node that the data as-
sociated with the requested key was not found in the DHT.
All service or traditional DHT nodes are obliged to reply
to these requests, regardless of whether they have the data
in question or not. This behaviour explains why, in Fig. 6,
when service nodes churn for very small networks there is a
tremendous reduction in latency relative to Pastry. It fol-
lows that if very few service nodes exist, the time taken
to receive a response will be greatly decreased, regardless of
the fact that it may not contain the requested data. Accord-
ingly, we refer to the case when a node successfully retrieves
a given object as a hit, and otherwise as a miss.

As stealth nodes do not store keys, it follows that the aver-
age number of keys per service node on a Stealth DHT is in-
creased compared with nodes on a normal Pastry network of
similar size. Unfortunately, this means that when a service
node is disconnected, a larger fraction of keys on the network
are also lost. To reduce the impact of such an event, keys
can be replicated amongst several service nodes (of course,
this can equally be done amongst traditional DHT nodes).

Fig. 7 shows the result of simulating object retrieval under
churn both with and without replication in Pastry and a
Stealth DHT. The Stealth DHT consisted of 95% stealth
nodes, wherein only the nodes holding keys churned.

In our simulations there existed three cases when the per-
centage of misses was always 0% (i.e. gets are always suc-
cessful): Pastry with no churn, a Stealth DHT with no churn
and a Stealth DHT with only stealth nodes churning. Thus,
these results confirm that the stability of stealth nodes has

no impact on key availability.
We show that by replicating keys just twice (i.e. k = 3),

the percentage of misses that occur are decreased signifi-
cantly. Obviously, for very small network sizes (e.g. 2 ser-
vice nodes for 23 stealth nodes), a Stealth DHT performs
poorly if the service nodes churn. Once sufficient service
nodes exist, however, the Stealth DHT manages to match
the performance of an equivalent Pastry DHT, despite it
having significantly fewer nodes holding keys. In this case,
both Pastry and the Stealth DHT have a miss rate of ap-
proximately 20% under churn. Again, we use an exponen-
tially distributed inter-arrival/departure time with a mean
of 6 minutes; it remains important to note that we envision
service nodes as being much more stable machines, and that
this result is shown for completeness only.

4.2.3 Load-Balancing
As already mentioned, in a Stealth DHT all storage and

routing responsibilities are placed on the service nodes alone.
We therefore studied the message overhead per node and the
corresponding number of packets per link on the underlying
network in order to assess the impact of these alterations on
load-balancing.

In the following simulations, DHTs consisting of 1,000
nodes were created for both Pastry and a Stealth DHT with
95% stealth nodes. 10,000 get requests were sent through
the course of the simulation, randomly divided amongst all
the nodes on the DHT; each node would therefore send ap-
proximately 10 requests. The exact key that each node re-
quests is again dependent on a Zipf distribution, as outlined
in Section 4.

Figs. 8 show the cumulative distribution function (CDF)
of received messages per node both with and without churn
for Pastry, a Stealth DHT with 95% stealth nodes, and the
Stealth DHT’s service nodes alone. We first note that the
distribution of messages per node for the Stealth DHT ex-
hibits the same expected non-uniformity for the network
both with and without churn with only 5% of the nodes
handling between 20 and 1,000 messages, and 95% of nodes
receiving less than or equal to only 20 messages. In this sim-
ulation, only stealth and Pastry nodes churned. The CDF
of received messages per service node is also shown on the
figure, showing a slightly more uniform distribution for re-
ceived messages for service nodes than for all nodes. This
shows that a Stealth DHT retains the ability to balance load
amongst its service nodes.

In contrast with the Stealth DHT, Figs. 8 also show that
the distribution of messages for Pastry without churn differs
from that with churn. For the case without churn, the CDF
of messages shows a gentler slope and a smoother curve than
for the Stealth DHT, with Pastry nodes receiving between
around 1 to 1,000 messages, as with the Stealth DHT. The
steepness of the curve indicates the expected uniform distri-
bution of messages amongst the nodes for Pastry. As seen
in Fig. 8(b), the distribution of messages among nodes in
Pastry under churn is, unexpectedly, not uniform. We ob-
serve that the variation of messages per node is significantly
higher for Pastry between 1 and 104 compared to 30 and 103

for service nodes. Thus, under churn service nodes actually
experience less load than a typical Pastry node due to the
fewer maintenance messages required.

Figs. 9 show the CDFs of packets per physical link for
Pastry, a Stealth DHT with 95% stealth nodes, and the

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Messages received per node

C
D

F

Stealth (95%)
Service nodes only
Pastry

(a) Without churn

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Messages received per node
C

D
F

Stealth (95%)
Service nodes only
Pastry

(b) With Churn

Figure 8: Distribution of received messages per node

80th percentile of links in a Stealth DHT, for cases with
and without churn. Packets per link is also known as link
stress. Similar trends to Figs. 8 are shown for both Pastry
and a Stealth DHT when there is no churn. Expectedly,
around 80% of the links in the Stealth DHT handle less
than or equal to 20 packets, and the remaining 20% of links
handle between 20 and 4 × 103 packets. The resultant
performance is near-identical regardless of churn. Of interest
is the stress performance difference between Pastry with and
without churn. We observe from Fig. 9(b) that under churn,
the distribution of packets per link in Pastry varies highly,
causing a small percentage of links to handle significantly
more packets compared to when there is no churn.

To verify that no link was uniquely overloaded in the
Stealth DHT, we plotted the CDF of packets for the 80th

percentile of packets per link, which is observed to be quite
uniform and unaffected by churn (see Figs. 9).

We further compared the performance of Pastry and a
Stealth DHT with 95% stealth nodes in terms of the av-
erage and maximum stress as a function of network size,
both with and without churn. These results are shown in
Figs. 10. Expectedly, links in the Stealth DHT experience
higher average and maximum stress performances than links
in Pastry when there is no churn. This is because packets in
a Stealth DHT are more likely to follow similar paths than
in Pastry due to a smaller number of routing service nodes
(only 5% of all nodes).

Fig. 10(b) shows the stress performance under churn. The
results show that links under Pastry experience much higher
average and maximum stress than links in the Stealth DHT.

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Packets per link

C
D

F

Stealth (95%)
Stealth 80th percentile
Pastry

(a) Without Churn

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.2

0.4

0.6

0.8

1

Packets per link

C
D

F

Stealth (95%)
Stealth 80th percentile
Pastry

(b) With Churn

Figure 9: Distribution of packets per link (Stress)

Take a network of 1,000 nodes for example, Pastry results in
average and maximum stress of 104 and 2 × 105 compared
to average and maximum stress for the Stealth DHT of only
200 and 4 × 103 respectively.

To sum up, Figs. 8 and Figs. 9 show that Pastry under
churn distributes load less effectively between its nodes than
a Stealth DHT does amongst its service nodes. Whereas
Figs. 10 shows that Stealth DHTs lead to higher maximum
stress than Pastry, while actually providing lower average
and maximum stresses when under churn. We attribute the
unbalanced load and the increase stresses in Pastry to the
many messages generated when a node churns. The combi-
nation of the join and the announcement messages causes
each Pastry node to see approximately an order of magni-
tude more messages than a Pastry node not under churn.
Since stealth node on the other hand do not use announce-
ment messages, service nodes see much less messages than
their Pastry counterparts.

4.2.4 The Effect of Increasing Churn
While we assume that service nodes are stable machines,

it is important to know what to expect if, for some reason,
they become unstable. We therefore examined how a Stealth
DHT with 95% stealth nodes performed under increasing
levels of churn.

Fig. 11 shows the percentage of misses as a function of
decreasing churn rate. From the figure we can see that as
mean inter-arrival/departure time decreases, the percentage
of misses increases steadily, climbing increasingly rapidly for
the highest rates of churn. It is also clear from the figure

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

DHT network size

N
et

w
or

k
st

re
ss

Pastry max
Pastry average
Stealth (95%) max
Stealth (95%) average

(a) Without churn

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

DHT network size
N

et
w

or
k

st
re

ss

Pastry max
Pastry average
Stealth (95%) max
Stealth (95%) average

(b) With Churn

Figure 10: Number of packets handled per link as a
function of network size

that regardless of the rate of churn, replication provides a
significant improvement in key availability.

4.2.5 Improvement Over Random Selection
As mentioned in Section 3.3, one may argue that the com-

plexity of using a routing table with a single row is un-
necessary, if randomly selecting a first hop from a set of
2b randomly obtained service nodes offers similar perfor-
mance. However, by simulating both scenarios with 1,000
nodes (95% stealth) we show that this is not the case.

Fig. 12(a) shows the percentage increase in end-to-end la-
tency when randomly selecting a first hop relative to using
a single row routing table. Clearly, we observe that both
approaches exhibit similar performance for small networks
(fewer than 20 nodes), whereas as network size increases
above 20, we see that a random selection results in higher la-
tencies with increasing discrepancy as a function of network
size. For example, for a network of 1,000 nodes, a random
selection produces a 30% increase in end-to-end latency.

The improved performance observed for a single row rout-
ing table is due to the fact that the first hop under random
selection makes little or no progress towards the message
destination. In particular, while DHT paths are made up
of a series of hops of exponentially decreasing length, the
first random hop potentially adds a long hop to the path;
thus seriously degrading the quality of the overall end-to-end
path.

Fig. 12(b) shows the CDF of messages received per service
node for both scenarios. We first observe that the number

0 2 4 6 8 10
10

20

30

40

50

60

70

80

Mean inter−arrival/departure time (minutes)

M
is

se
s

(%
)

No replication (k=1)
Replication (k=3)

Figure 11: Percentage of misses under decreasing
churn

of messages per node is higher if nodes select their first hop
randomly. For instance, around 40% of the service nodes in
the Stealth DHT receive fewer than 200 messages, whereas if
the first hop is randomly selected then all nodes receive more
than 200. This shows that random selection also results in
a larger average number of messages than if a single row
routing table is used. The percentage of nodes that receive
a large number of messages is similar for both cases, and is
caused by the combined effect of the Zipf popularity for the
keys, as used in the simulations, and normal DHT routing
behaviour. Indeed, this similarity is to be expected, as the
set of nodes chosen as the first hop in the Stealth DHT case
is the same as the set of nodes chosen as the second hop in
the random case.

4.3 Implementation
In addition to simulations we also created and deployed an

implementation of a Pastry-based Stealth DHT onto Planet-
Lab [15]. This section compares the performance of Stealth
DHT to that of Pastry while running on a real-world plat-
form. PlanetLab provides roughly 600 nodes, but at any
time roughly only 400 of these were active. Every imple-
mentation run we used a randomly selected set of nodes
from the pool of 400. Each node ran four instances of our
implementation, thus when we have results for 1200 nodes,
this actually represents 300 physical machines, each hosting
four nodes. When we used the Stealth DHT portion of the
implementation, we randomly selected which nodes would
be service nodes and which would be stealth nodes from the
pool of available nodes. However, we ensured that at most
one instance of a service node would be run on any physi-
cal machine. The nodes would then use a random bootstrap
node from the set of joined service nodes, thus providing a
uniformly distributed load during join.

While using PlanetLab we encountered some limitations
in the use of our implementation, these were the common
problems of timing and unpredictable node failures. Given
the number of physical nodes used and their geographical
diversity, it is perhaps to be expected that many would have
their clocks incorrectly set and/or be prone to occasional
failure. We therefore examined all retrieved data carefully,
discarding results where necessary.

We first examine the overhead caused by joins. This was
also looked at within the simulator in Section 4.2.1, but in
Fig. 13 we verify if these overheads hold true in the real-
world. Here we plot the number of messages generated on

10
0

10
1

10
2

10
3

−10

0

10

20

30

40

DHT network size

In
cr

ea
se

 in
 la

te
nc

y
(%

)

(a) Percentage increase in end-to-end latency

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Messages per service node
C

D
F

1 row routing table
Random selection

(b) Number of messages received per service node

Figure 12: Comparison between the use of a single
row routing table and random selection

average when a single node (service or stealth) joins the net-
work as a function of network size. This includes the initial
join message, the state sent back to the node and also the
announcements sent back into the network. Pastry nodes
consistently generate between 30 and 50 messages for each
join; the majority of these are the announcement messages,
and messages sent to nodes’ leafsets. In the case of Stealth
DHTs, when a stealth node joins these announcement and
leafset messages are not generated, thus producing values
between 5 and 15 messages per join (for the considered net-
work sizes of 50%, 80% and 95% stealth nodes).

Fig. 14 shows the average number of hops a get message
takes to get to its destinations for differently sized networks.
Lines of best fit are also plotted for clarity. These results
show the same trends as the simulation results, as well as the
expected results. However, in all cases they exhibit slightly
more hops than the anticipated values: 15% for Pastry and
between 10% and 12% for the stealth DHT lines. These
increased hop counts can be explained by Fig. 15.

While running our implementation on PlanetLab, we
found that there were a significant number of nodes with
non-transitive connectivity (i.e. a node A may be able to
contact B, B may be able to contact C, but C cannot con-
tact A) [6]. Fig. 15 shows the percentage of messages that
experience at least one failed hop between source and desti-
nation. This does not indicate that the message failed to be
delivered, just that the optimal path failed and a alterna-
tive route was taken. When an alternative route is taken this
adds to the end-to-end delay of the message, as well as de-

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

DHT network size

N
um

be
r

of
 m

es
sa

ge
s

Stealth (50%) Stealth (80%) Stealth (95%) Pastry

Figure 13: Average number of messages generated
per node during a single join

0 200 400 600 800 1000 1200
1

1.5

2

2.5

3

3.5

DHT network size

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Pastry
Stealth (80%)
Stealth (95%)

Figure 14: Average DHT hops for get message in
varying sized Pastry and Stealth networks

grading DHT network performance. The results for Stealth
DHTs are excluded from the plot for clarity but have similar
points with similar trend lines.

5. APPLICATIONS OF STEALTH DHT
The Stealth DHT approach has several noteworthy fea-

tures that make it appealing for a number of applications.
As one might expect, any application that can make use
of a traditional DHT could also be implemented on top of
a Stealth DHT, often leveraging the additional properties
offered to provide greater functionality and performance.
The benefits, such as scalability, resilience, improved per-
formance and so forth should be common to all applications
built upon the Stealth DHT foundation.

A good example of where nodes may have low capabilities
and a short lifetime is a mobile environment. The nature of
mobile communications means that these nodes are particu-
larly likely to cause churn, which causes serious problems for
traditional DHTs [8]. It is also important that such nodes be
able to join the network quickly and efficiently, otherwise the
time taken connecting to the network may dominate their
lifespan. A Stealth DHT therefore provides an ideal solu-
tion by supporting mobile nodes as stealth nodes as discuss
in [13].

Commercial applications such as content delivery net-
works could also make good use of a number of specific
features. By using identification and authentication (e.g.
digital certificates) in conjunction with a Stealth DHT, a

0 200 400 600 800 1000 1200
0

10

20

30

40

50

DHT network size

F
ai

le
d

m
es

sa
ge

s
(%

)

Pastry
Pastry Best Fit

Figure 15: Percentage of messages that experience
at least one failed hop on their path as a function of
network size

(DHT) service provider can control which operations nodes
are allowed to carry out. For example, an announcement
message (see Section 3.1) can be discarded and ignored by
service nodes if it does not carry proper credentials, ensur-
ing that only authorised nodes join as service nodes. In the
same manner, a DHT service provider could control who
publishes what on its network as well as using the authen-
tication information provided to trace content publishers if
need be, whilst being able to guarantee to clients (stealth
nodes) that they will only talk to trusted nodes (service
nodes). These are by no means an exhaustive list of the
powerful control a DHT service provider can regain through
the combined use of Stealth DHT and authentication. Such
control would, in turn, allow the service provider to repel
some of the major common security issues present in peer-
to-peer networks, such as sniffing, man-in-the-middle, pollu-
tion and some denial-of-service attacks, while still benefiting
from the scalability and resilience of these networks. We also
discuss this topic further in [12].

Certain applications may also require that the source of
messages be addressable on the DHT. As no state regarding
stealth nodes is stored in service nodes, this is impossible
without an extension to the Stealth DHT.

Recall that service nodes deliberately avoid keeping any
state on stealth nodes as a means of improving performance
and security. It is therefore important to design addressabil-
ity mechanisms for stealth nodes that do not jeopardise these
basic design principles. We propose two application-specific
solutions to this issue: Registration and Encapsulation.

Registration, as the name suggests, involves stealth nodes
registering their existence with the service node closest to
their IDs in the address space, by simply sending a regis-
tration message towards their own ID. The corresponding
service node can then record the registering stealth node’s
ID and pertinent other details in what we refer to as a Ad-
dressing Table3. The registration method therefore allows
the service node with which a stealth node registered to
forward the appropriately addressed DHT messages to it.
Registration information can also be used to detect colli-
sions between stealth node IDs (see Section 3.2) and take
appropriate remedial action.

In request-response circumstances, where service nodes

3The information in an addressing table should be main-
tained using an appropriate soft-state mechanism.

0

500

1000

1500

0 2
0

500

1000

1500

DHT ID

N
um

be
r

of
 d

ep
en

de
nt

 s
te

al
th

 n
od

es

128

Registration

Encapsulation

Figure 16: Stealth nodes addressability: service nodes
overhead

only need to be able to reply to stealth nodes via the DHT
rather than direct unicast, then our encapsulation method
may provide a better solution. In encapsulation, the service
node which happens to be the first hop of a stealth node’s
message records information about this message for a lim-
ited time, and forwards it on as though the message was
sent by the service node itself. The message also contains
a local identifier associated with the message4. Note that
stealth node ID collisions may not be a problem with this
method, as the information held in message records can in-
clude differentiating information such as the stealth nodes’
IP addresses. Collisions would then be resolved as different
local identifiers.

Fig. 16 shows the number of dependent stealth nodes per
service node for a DHT with 10,000 stealth nodes and 200
service nodes. For registration, each stealth node registered,
while for the encapsulation example, each stealth node sent
a message to the same service node. The more uniform
repartition of stealth nodes among service nodes is obvi-
ously explained by the fact that both service and stealth
nodes are uniformly distributed across the overlay and regis-
tration information is kept at the service node closest to the
corresponding stealth node. The apparent concentration of
state on just a few service nodes in the encapsulation case is
caused by the routing strategy which, in essence, divides the
DHT ring into 2b equal regions and always strives to find a
first hop within the region where the destination lies (in our
case this destination is unique). The observant reader will
have noticed that with encapsulation, service nodes outside
this restricted region also hold a small amount of encapsu-
lation state. This is caused by incomplete or invalid entries
in some stealth node routing tables, forcing these nodes to
pick a first hop at random.

The choice of stealth node addressability mechanism is
application dependent and the results above are provided
solely to guide such a choice.

6. RELATED WORK
A number of previous works have also proposed improving

DHT performance by separating network nodes into groups
of more and less capable nodes, wherein the more capable
nodes are often referred to as super-peers. Indeed, the no-
tion of incorporating such a strategy into traditional DHT

4Original message fields and the local identifier may be en-
coded as optional header field

algorithms is seemingly similar to that of our Stealth DHT
proposal. However, we should stress that there are a number
of key differences in our approach.

Mizrak et al. [14], and Zhu et al. [25], suggested similar
architectures that utilised a dual overlay DHT where one
overlay exists for the super-peers, and another for the nor-
mal peers. In these approaches peers will forward onto the
super-peer overlay first via their nearest super-peer, which
continues forwarding towards the destination super-peer. In
turn the destination super-peer moves the message back onto
the normal overlay. The problem with this approach is that
each normal peer is associated with a single super-node,
which results in a single point of failure, and also requires
each super node to retain a large amount of state. In our
system, stealth nodes are connected to the DHT itself, al-
beit without appearing to other nodes. The advantage of our
approach is that a stealth node is not reliant on any one ser-
vice node for connectivity; in the event of a failure, the DHT
algorithm will automatically ensure that a suitable replace-
ment can forward any data that a stealth node wishes to
send without extra overhead. In addition, as stealth nodes
decide their own first hop we achieve slightly improved levels
of routing performance.

Xu et al. [23] suggest a DHT where nodes are only added
into the routing tables after the node has appeared on the
network for a given length of time. This allows the more sta-
ble nodes to be identified and used in preference. However
this technique requires continuous probing of newly join-
ing nodes to calculate their stability. They claim that this
additional overhead is less than the maintenance overhead
required when there is churn, however they have left their
evaluation as future work.

The topic of how churn affects DHTs has also been widely
discussed. Rhea et al. [18] demonstrated how many DHT
implementations simply break under high levels of churn,
especially with high levels of background traffic. As a con-
sequence, any attempt to use a traditional DHT with unsta-
ble nodes (mobile clients, for example), is unlikely to yield
acceptable performance. While there have been several ef-
forts to solve this issue[8], they still involve placing unstable
nodes into the DHT itself whilst using complex algorithms
to attempt to lessen the effect of churn. Our system takes
a simpler approach in that as stealth nodes are not allowed
to forward data, their transient nature does not affect the
routing performance of the network.

In Section 3.2, we discussed that one of the benefits of
stealth DHTs is that it is relatively inexpensive in terms of
the number of messages generated to join a stealth node to
the network. Nodes on a traditional DHT, however, often
exchange substantial numbers of messages when a new node
joins. Making this process more efficient has been discussed
previously [23], however Li et al. [11] point out that a num-
ber of DHT studies do not look at all the parameters, such
as the amount of bandwidth consumed.

7. CONCLUSIONS
We have proposed a simple, yet elegant method to support

super-peering in DHTs. Our stealth DHT proposal accom-
modates both super-peers (service nodes) and other peers
(stealth nodes) in a single overlay structure. Furthermore,
Stealth DHTs provide for the isolation of stealth nodes,
therefore avoiding numerous security and privacy issues as
well as providing non-negligible performance improvement.

Straightforward extensions to Stealth DHTs have also been
shown to support applications that may require to commu-
nicate with all peer nodes using the overlay routing. From a
scalability, resilience and robustness perspective, a Stealth
DHT exhibits the same properties as the original DHT, be-
cause stealth nodes use the original routing mechanism to
choose the first hop for their messages on the DHT, and
therefore does not exhibit single points of failures even in
the presence of service node churn, whilst preserving a di-
rect route to the destination. Furthermore, as service nodes
actually act as fully-fledged DHT nodes, a Stealth DHT with
no stealth nodes would behave like the original DHT.

When coupled with identification and authentication,
Stealth DHTs can confer a level of control to the super-peers
that is unprecedented in today’s peer-to-peer networks. In-
deed, such control can equal that provided by traditional
server-based solutions, but without compromising the many
advantages afforded by the distributed DHT solution. In
essence, the Stealth DHT concept goes a long way towards
the best of both worlds.

Finally, despite their simplicity, the principles underly-
ing Stealth DHT can be seen as a major enabler of more
commercial exploitation of DHT technology, therefore un-
leashing the true potential of structured peer-to-peer tech-
nologies.

8. REFERENCES
[1] K. Calvert and E. Zegura. Georgiatech internetwork

topology models.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, and
A. Rowstron. SCRIBE: A large-scale and
decentralised application-level multicast
infrastructure. IEEE Journal on Selected Areas in
Communications (JSAC), 20(8), 2002.

[3] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proc. of ACM SOSP, October 2001.

[4] P. Druschel, E. Engineer, R. Gil, Y.-C. Hu, S. Iyer,
A. Ladd, A. Mislove, A. Nandi, A. Post, C. Reis,
A. Singh, and R. Zhang. Freepastry implementation.

[5] P. Druschel and A. Rowstron. A large-scale, persistent
peer-to-peer storage utility. In Proc. of the Eigth
Workshop on Hot Topics in Operating Systems, pages
75–80, May 2001.

[6] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and
I. Stoica. Non-transitive connectivity and DHTs. In
Proc. of USENIX WORLDS 2005, December 2005.

[7] P. B. Godfrey and I. Stoica. Heterogeneity and load
balance in distributed hash tables. In Proc. of IEEE
INFOCOM, March 2005.

[8] H.-C. Hsiao and C.-T. King. Mobility churn in DHTs.
In Proc. of the 1st International Workshop on
Mobility in Peer-to-Peer Systems (MPPS’05), pages
799–805, June 2005.

[9] D. R. Karger and M. Ruhl. Simple efficient load
balancing algorithms for peer-to-peer systems. In
ACM Symposium on Parallelism in Algorithms and
Architectures, pages 36–43, June 2004.

[10] J. Kubiatowicz. Oceanstore: An architecture for
global-scalable persistent storage. In Proc. of the
ASPLOS 2000, November 2000.

[11] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and

T. M. Gil. A performance vs. cost framework for
evaluating DHT design tradeoffs under churn. In Proc.
of IEEE INFOCOM, Miami, FL, March 2005.

[12] A. MacQuire, A. Brampton, I. A. Rai, and L. Mathy.
Authentication in Stealth Distributed Hash Tables. In
Proc. of the 32nd Euromicro Conference on Software
Engineering and Advanced Applications, August 2006.

[13] A. MacQuire, A. Brampton, I. A. Rai, and L. Mathy.
Performance analysis of Stealth DHT with mobile
nodes. In Proc. of the 3rd IEEE International
Workshop on Mobile Peer-to-Peer Computing, Pisa,
Italy, March 2006.

[14] A. T. Mizrak, Y. Cheng, V. Kumar, and S. Savage.
Structured superpeers: Leveraging heterogeneity to
provide constant-time lookup. In Proc. of the Third
IEEE Workshop on Internet Applications
(WIAPP’03), pages 104–111, 2003.

[15] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
blueprint for introducing disruptive technology into
the Internet. In Proc.of the 1st Workshop on Hot
Topics in Networks (HotNets-I), October 2002.

[16] H. Pucha, S. M. Das, and Y. C. Hu. How to
implement DHTs in mobile ad hoc networks? In Proc.
of the 10th ACM International Conference on Mobile
Computing and Networks, September 2004.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc. of ACM SIGCOMM, August 2001.

[18] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling churn in a DHT. In Proc. of the USENIX
Annual Technical Conference, June 2004.

[19] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proc. of the 18th IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware), pages 329–350, Nov. 2001.

[20] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
measurement study of peer-to-peer file sharing
systems. In Proc. of MMCN, 2002.

[21] K. Sripanidkulchai. The popularity of gnutella queries
and its implications on scalability. In OReillys
http://www.openp2p.com, Feb. 2001.

[22] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for Internet applications. In Proc. of
ACM SIGCOMM, pages 149–160, August 2001.

[23] Z. Xu, R. Min, and Y. Hu. Reducing maintenance
overhead in DHT based peer-to-peer algorithms. In
Proc. of Peer-to-Peer Computing (P2P03), 2003.

[24] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. Kubiatowicz. Tapestry: A resilient
global-scale overlay for service deployment. IEEE
Journal on Selected Areas in Communications,
22(1):41–53, 2004.

[25] Y. Zhu, H. Wang, and Y. Hu. A super-peer based
lookup in structured peer-to-peer systems. In Proc. of
the 16th International Conference on Parallel and
Distributed Computing Systems (PDCS’03), 2003.

[26] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz,
and J. D. Kubiatowicz. Bayeux: An architecture for
scalable and fault-tolerant wide-area data
dissemination. In Proc. of NOSSDAV, June 2001.

	1 Introduction
	2 DHT Overview
	3 Stealth DHT Overview
	3.1 Service Node Join
	3.2 Stealth Node Join
	3.3 Stealth Routing State
	3.4 Stealth Routing State Maintenance

	4 Evaluation
	4.1 Validation
	4.2 Simulations
	4.2.1 Join Performance
	4.2.2 Storage and Retrieval
	4.2.3 Load-Balancing
	4.2.4 The Effect of Increasing Churn
	4.2.5 Improvement Over Random Selection

	4.3 Implementation

	5 Applications of Stealth DHT
	6 Related Work
	7 Conclusions
	8 References

